#### 5 May 2023

# SHE research at RIKEN Nishina Center

H. Sakai for nSHE research group RIKEN Nishina Center



# SHE research at RIKEN Nishina Center

#### 1. Introduction

• RIKEN Nishina Center (RNC) & discovery of nihonium (Nh Z=113)

- 2. SHE Project
  - SRILAC, SCECRIS, GARIS-III construction
    - H. Sakai et al., Eur. Phys. J. A (2022) 58 :238
  - Key elements: S/N  $\alpha$ -decay meas., <sup>248</sup>Cm target preparation
- 3. <sup>51</sup>V+<sup>248</sup>Cm: Quasi-elas. barrier distribution measurement
  - Choice of E<sub>opt</sub>(<sup>51</sup>V)

M. Tanaka et al., JPSJ 91 (2022) 084201

- 4. <sup>248</sup>Cm (<sup>51</sup>V, xn)<sup>299-x</sup>119 reaction (x=3 and 4)
  - Present status
- 5. <sup>51</sup>V+<sup>159</sup>Tb reaction
  - Fusion reaction mechanism (deformation effect)
  - **Pierre Brionnet, in preparation**
- 6. Summary

### 1. RIKEN Nishina Center (RNC)



RNC • 5 cyclotrons 2 linacs SCRIT (e microtron)

• SRC (2006) of RIBF Milestone: <sup>238</sup>U 345 MeV/u 82.4 GeV , ~100pnA

Highest beam energy cyclotron

FFICIALLY

### **Discovery of nihonium**

- <sup>209</sup>Bi(<sup>70</sup>Zn,n) <sup>278</sup>113 : cold fusion reaction
- Morita Group
- RILAC(RIKEN Linear Accelerator)
- GARIS(gas-filled recoil ion separator)
- Nh discovered (2016)
  3 events / 575 days (2004,2005,2012)
- Production cross section ~22 fb





Nishina BLD



### What is next?

**IUPAC Periodic Table of the Elements** 

| 1                                               |                                            |                                           |                                                                |                                                 |                                             |                                           |                                           |                                                |                                                |                                         |                                           |                                                 |                                            |                                                 |                                                  |                                                | 18                                          |
|-------------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------------|--------------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------|
| 1<br>H<br>hydrogen<br>1.0080<br>± 0.0002        | 2                                          |                                           | Key:                                                           |                                                 |                                             |                                           |                                           |                                                |                                                |                                         |                                           | 13                                              | 14                                         | 15                                              | 16                                               | 17                                             | 2<br>He<br>helium<br>4.0026<br>±0.0001      |
| 3<br>Li<br>lithium<br>6.94<br>±0.06             | 4<br>Be<br>9.0122<br>± 0.0001              |                                           | atomic num<br>Symbo<br>name<br>abridged stande<br>atomic weigh | ber<br>DI<br>and                                |                                             |                                           |                                           |                                                |                                                |                                         |                                           | 5<br>B<br>boron<br>10.81<br>± 0.02              | 6<br>C<br>carbon<br>12.011<br>± 0.002      | 7<br>N<br>nitrogen<br>14.007<br>± 0.001         | 8<br>O<br>oxygen<br>15.999<br>± 0.001            | 9<br><b>F</b><br>fluorine<br>18.998<br>± 0.001 | 10<br>Ne<br>neon<br>20,180<br>± 0.001       |
| 11<br>Na<br>sodium<br>22.990<br>±0.001          | 12<br>Mg<br>magnesium<br>24.305<br>± 0.002 | 3                                         | 4                                                              | 5                                               | 6                                           | 7                                         | 8                                         | 9                                              | 10                                             | 11                                      | 12                                        | 13<br>Al<br>aluminium<br>26.982<br>± 0.001      | 14<br>Si<br>silicon<br>28.085<br>± 0.001   | 15<br>P<br>phosphorus<br>30.974<br>± 0.001      | 16<br>S<br>sulfur<br>32.06<br>± 0.02             | 17<br>Cl<br>chlorine<br>35.45<br>±0.01         | 18<br>Ar<br>argon<br>39.95<br>± 0.16        |
| 19<br>K<br>potassium<br>39.098<br>± 0.001       | 20<br>Ca<br>calcium<br>40.078<br>± 0.004   | 21<br>Sc<br>scandium<br>44.956<br>± 0.001 | 22<br>Ti<br>titanium<br>47.867<br>±0.001                       | 23<br>V<br>vanadium<br>50.942<br>± 0.001        | 24<br>Cr<br>chromium<br>51.996<br>± 0.001   | 25<br>Mn<br>manganese<br>54.938<br>±0.001 | 26<br>Fe<br>iron<br>55.845<br>± 0.002     | 27<br>Co<br>cobalt<br>58.933<br>±0.001         | 28<br><b>Ni</b><br>nickel<br>58.693<br>± 0.001 | 29<br>Cu<br>copper<br>63.546<br>± 0.003 | 30<br>Zn<br>2inc<br>65.38<br>± 0.02       | 31<br>Ga<br>gallium<br>69.723<br>± 0.001        | 32<br>Ge<br>germanium<br>72.630<br>± 0.008 | 33<br><b>AS</b><br>arsenic<br>74.922<br>± 0.001 | 34<br>Se<br>selenium<br>78.971<br>± 0.008        | 35<br>Br<br>bromine<br>79.904<br>± 0.003       | 36<br>Kr<br>krypton<br>83.798<br>± 0.002    |
| 37<br><b>Rb</b><br>rubidium<br>85.468<br>±0.001 | 38<br>Sr<br>strontium<br>87.62<br>± 0.01   | 39<br>Y<br>yttrium<br>88.906<br>± 0.001   | 40<br>Zr<br>zirconium<br>91.224<br>± 0.002                     | 41<br>Nb<br>niobium<br>92.906<br>± 0.001        | 42<br>Mo<br>molybdenum<br>95.95<br>± 0.01   | 43<br>Tc<br>technetium<br>[97]            | 44<br>Ru<br>ruthenium<br>101.07<br>± 0.02 | 45<br><b>Rh</b><br>rhodium<br>102.91<br>±0.01  | 46<br>Pd<br>palladium<br>106.42<br>±0.01       | 47<br>Ag<br>silver<br>107.87<br>± 0.01  | 48<br>Cd<br>cadmium<br>112.41<br>± 0.01   | 49<br>In<br>indium<br>114.82<br>± 0.01          | 50<br>Sn<br>118.71<br>± 0.01               | 51<br>Sb<br>antimony<br>121.76<br>± 0.01        | 52<br><b>Te</b><br>tellurium<br>127.60<br>± 0.03 | 53<br> <br>iodine<br>126.90<br>± 0.01          | 54<br>Xe<br>xenon<br>131.29<br>± 0.01       |
| 55<br>Cs<br>caesium<br>132.91<br>± 0.01         | 56<br>Ba<br>barium<br>137.33<br>± 0.01     | 57-71<br>Ianthanoids                      | 72<br>Hf<br>hafnium<br>178.49<br>±0.01                         | 73<br><b>Ta</b><br>tantalum<br>180.95<br>± 0.01 | 74<br>W<br>tungsten<br>183.84<br>± 0.01     | 75<br>Re<br>rhenium<br>186.21<br>±0.01    | 76<br>OS<br>osmium<br>190.23<br>± 0.03    | 77<br><b>Ir</b><br>iridium<br>192.22<br>± 0.01 | 78<br>Pt<br>platinum<br>195.08<br>± 0.02       | 79<br>Au<br>gold<br>196.97<br>± 0.01    | 80<br>Hg<br>mercury<br>200.59<br>± 0.01   | 81<br><b>TI</b><br>thallium<br>204.38<br>± 0.01 | 82<br>Pb<br>lead<br>207.2<br>± 1.1         | 83<br>Bi<br>bismuth<br>208.98<br>± 0.01         | 84<br>Po<br>polonium<br>[209]                    | 85<br>At<br>astatine<br>[210]                  | 86<br>Rn<br>radon<br>[222]                  |
| 87<br>Fr<br>francium                            | 88<br>Ra<br>radium                         | 89-103<br>actinoids                       | 104<br>Rf<br>rutherfordium                                     | 105<br>Db<br>dubnium<br>(268)                   | 106<br>Sg<br>seaborgium                     | 107<br>Bh<br>bohrium<br>12701             | 108<br>HS<br>hassium                      | 109<br>Mt<br>meitnerium                        | 110<br>DS<br>darmstadtium<br>(281)             | 111<br>Rg<br>roentgenium                | 112<br>Cn<br>copernicium                  | 113<br>Nh<br>nihonium                           | 114<br>Fl<br>flerovium                     | 115<br>Mc<br>moscovium<br>(290)                 | 116<br>LV<br>livermorium                         | 117<br>TS<br>tennessine                        | 118<br>Og<br>oganesson                      |
| 119                                             |                                            |                                           | 57<br>La                                                       | 58<br><b>Ce</b>                                 | 59<br>Pr                                    | 60<br>Nd                                  | 61<br>Pm                                  | 62<br>Sm                                       | 63<br>Eu                                       | 64<br>Gd                                | 65<br>Tb                                  | 66<br>Dy                                        | 67<br>Ho                                   | 68<br>Er                                        | 69<br>Tm                                         | 70<br>Yb                                       | 71<br>Lu                                    |
|                                                 |                                            |                                           | 138.91<br>± 0.01<br>89<br>AC<br>actinium                       | 140.12<br>± 0.01<br>90<br><b>Th</b><br>thorium  | 140.91<br>±0.01<br>91<br>Pa<br>protactinium | 14424<br>±0.01<br>92<br>U<br>uranium      | (145)<br>93<br>Np<br>neptunium            | 150.36<br>± 0.02<br>94<br>Pu<br>plutonium      | 151.95<br>± 0.01<br>95<br>Am<br>americium      | 96<br>Cm<br>curium                      | 158.93<br>± 0.01<br>97<br>Bk<br>berkelium | 162.50<br>± 0.01<br>98<br>Cf<br>californium     | 164.93<br>±0.01<br>99<br>ES<br>einsteinium | 167.26<br>± 0.01<br>100<br>Fm<br>fermium        | 168.93<br>± 0.01<br>101<br>Md<br>mendelevium     | 173.05<br>± 0.02<br>102<br>No<br>nobelium      | 174.97<br>± 0.01<br>103<br>Lr<br>Iawrencium |
|                                                 | ST ILI TIO                                 |                                           | [227]                                                          | 232.04<br>± 0.01                                | 231.04<br>±0.01                             | 238.03<br>±0.01                           | [237]                                     | [244]                                          | [243]                                          | [247]                                   | [247]                                     | [251]                                           | [252]                                      | [257]                                           | [258]                                            | [259]                                          | [262]                                       |

For notes and updates to this table, see www.iupac.org. This version is dated 4 May 2022. Copyright © 2022 IUPAC, the International Union of Pure and Applied Chemistry.

### 2. SHE Project (2016)

#### • Goal: Discover new SHE Z=119

<sup>248</sup>Cm(<sup>51</sup>V, xn) <sup>299-x</sup>119 by hot fusion reaction
 Expected cross section ≤ 10 fb (10<sup>-38</sup> cm<sup>2</sup>) (heuristic guess!)

| <sup>248</sup> Cm( $^{51}$ V,xn) <sup>299-x</sup> 119 | Cross section (fb) |     |  |  |
|-------------------------------------------------------|--------------------|-----|--|--|
| channel x                                             | 3n                 | 4n  |  |  |
| Ghahramany (2016)                                     | 20                 | 100 |  |  |
| Zhu (2016)                                            | 6                  | 11  |  |  |

#### Z=119 expected decays via. <sup>248</sup>Cm(<sup>51</sup>V, xn) x=3 and 4



7 generations(successive α emissions)

5-α-decay chain known

### SHE Project (2016)

#### • Goal: Synthesis new SHE Z=119

<sup>248</sup>Cm(<sup>51</sup>V, xn) <sup>299-x</sup>119 by hot fusion reaction
Expected cross section ≤ 10 fb (10<sup>-38</sup> cm<sup>2</sup>)

 SRILAC:~6 MeV/u <sup>51</sup>V beam (RILAC 5.5 MeV/u)
 SC-ECRIS: High-intensity beam
 <sup>248</sup>Cm<sub>2</sub>O<sub>3</sub> material: Collaboration with ORNL
 GARIS-III: Spectrometer + Focal plane det. Electronics etc.

| <sup>248</sup> Cm( $^{51}$ V,xn) <sup>299-x</sup> 119 | Cross section (fb)         |     |  |  |
|-------------------------------------------------------|----------------------------|-----|--|--|
| channel $x$                                           | 3n                         | 4n  |  |  |
| Ghahramany (2016)                                     | 20                         | 100 |  |  |
| Zhu (2016)                                            | 6                          | 11  |  |  |
| Adamian (2018)                                        |                            | 12  |  |  |
| Manjunatha (2019)                                     | 4                          |     |  |  |
| Siwek-Wilczynska (2019)                               | 3                          | 6   |  |  |
| Aritomo (2020)                                        | 20 at $E^*=20 \text{ MeV}$ |     |  |  |
| Lv (2021)                                             | 9.8                        | 1.3 |  |  |

#### **Courtesy to : N. Sakamoto for SRILAC**

- : Y. Higurashi, T. Nagatomo for SC-ECRIS
- : K. Morimoto, P. Brionnet for GARIS-III
- : H. Haba for Target

### SRILAC, SC-ECRIS and GARIS-III



#### SRILAC (10 SC-QWRs)



SRILAC cryomodules

### Photo of experimental room



SHE Project described in: H. Sakai et al., Eur. Phys. J. A (2022) 58 :238

### **Target preparation**

- ${}^{248}Cm_2O_3$  (~0.5 mg/cm<sup>2</sup>)+ backing foil(1~3 µm)
- Fabricate by molecular plating method
- Backing material: C, Be, Ti, Mo...
- Severe envr. ~10 W /1pµA (ΔE=10 MeV)
   >500 °C, evaporate in a instant.
   → rotating wheel (15-30 cmφ, 2,000 rpm)
- Testing various backing materials
- <sup>248</sup>Cm materials supplied by ORNL (DOE)



**Cell for electrodeposition** 



## Accidental events

- Pixel of DSSD: 1×2 mm<sup>2</sup>
- In-planted residue undergoes successive
   α decays (10ms-10s)

#### Focal plane detectors





- $\alpha$  particle-like accidental events
- Estimated as 6.9 ×10<sup>-4</sup>/s at a beam intensity of 2 pµA for 2×4 mm<sup>2</sup> pixel size

Achieved a pretty quiet environment → reliable assignment

# 3. Quasi-elastic barrier distribution measurement Choice of $E_{opt}$ <sup>(51</sup>V)

SRILAC+GARIS-III started in 2018

QE barrier distribution measurement by Masaomi Tanaka
 Published in J. Phys. Soc. Jpn. 91 (2022) 084201
 "Probing Optimal Reaction Energy for Synthesis of Element 119 from 51V+248Cm

Reaction with Quasielastic Barrier Distribution Measurement"

• Determine the optimal bombarding energy of  $E_{opt}(^{51}V)$  beam  $P_{ER} = P_{CAP}(E_{opt}) \times P_{CN} \times P_{surv}$ 

- $P_{CAP}(E_{opt})$  : Coulomb barrier (B<sub>0</sub>) penetration prob.
- **B**<sub>0</sub> may be inferred by (quasi-)elastic scat. measurement



### Principle of QE barrier measurement

#### Rutherford scattering

- $\rightarrow \theta \leftrightarrow b$  (impact para.) : rotate detector for  $\theta$
- > Rutherford ratio  $d\sigma_{exp}/d\sigma_{R}=1$  for pure Coulomb
- $ightarrow \mathbf{R}_{min} \leq \mathbf{r}_{h} + \mathbf{r}_{T} \rightarrow \text{nuclear force starts working}$
- > then,  $d\sigma_{exp}/d\sigma_{R} \ge 1$  due to absorption (iW pot.)





#### • **RIKEN:**

- $\succ$  E<sub>beam</sub> change instead of  $\theta$  change
- **>** But detector set at  $\theta = 180^{\circ}$  (recoil of tgt)
- > Direct measure of QE barrier at  $L \sim 0$ .

(Most important component of ER production)

### Experimental setup QE barrier measurement

#### **Target**

 $^{248}Cm_2O_3~(483~ug/cm^2)$  on Ti backing  $(1.31~mg/cm^2)$ 

#### **Gas-filled recoil ion separator GARIS-III**

Detect target-like events recoiled at  $\theta_{lab}=0^{\circ}$  ( $\theta_{cm}=180^{\circ}$ )  $\rightarrow$  L~0 (s-wave, most important of ER production)

#### **Reflection probability** R(E)

 $R(E) = \frac{d\sigma_{QE}}{d\sigma_{Ruth}}$   $R(E) = 0.5 \rightarrow \sigma \text{ (capture)} = \sigma \text{ (reflection)}$ 

#### Target-like events were clearly identified. 140 $E_{\rm c.m.} = 182.1 \text{ MeV} (\text{Lowest})$ 120 E<sub>DSSD</sub>(MeV) 100 60 Counting gat 60 40 <sup>181</sup>Ta 40 20 20 0 20 40 60 **TOF**(ns)

#### Result: Average Coulomb barrier height Bo of <sup>51</sup>V+<sup>248</sup>Cm



 $B_0 = 225.6 \pm 0.2 \text{ MeV}$ 

Need to consider for:
 > Side-collision (B<sub>side</sub>)
 > ΔE<sub>opt</sub>(σ<sub>EV</sub>) ~ +1.8 MeV

 Adopted <sup>51</sup>V beam energy E<sub>opt</sub>(adopted)= 234.8 MeV

#### Final beam energy

Energy loss of target+backing

### Side-collision

T. Tanaka eta al., PRL 124, 052502 (2020).

#### **Side collision in hot-fusion reaction**

Actinide target (large prolate deformation) → Side collision is favorable for CN&ER formation.



B<sub>side</sub> is estimated with CC calculation → Model dependent



### **Comparison to theoretical models**

L. Zhu et al., PRC **89**, 024615 (2014).

N. Ghahramany et al., Eur. Phys. J. A **52**, 287 (2016).

X.-J. Lv et al., PRC **103**, 064616 (2021).

K. Swiek-Wilczyńska et al., PRC **99**, 054603 (2019).



| <sup>248</sup> Cm( $^{51}$ V,xn) <sup>299-x</sup> 119 | Cross section (fb)         |     |  |  |
|-------------------------------------------------------|----------------------------|-----|--|--|
| channel x                                             | 3n                         | 4n  |  |  |
| Ghahramany (2016)                                     | 20                         | 100 |  |  |
| Zhu (2016)                                            | 6                          | 11  |  |  |
| Adamian (2018)                                        |                            | 12  |  |  |
| Manjunatha (2019)                                     | 4                          |     |  |  |
| Siwek-Wilczynska (2019)                               | 3                          | 6   |  |  |
| Aritomo (2020)                                        | 20 at $E^*=20 \text{ MeV}$ |     |  |  |
| Lv (2021)                                             | 9.8                        | 1.3 |  |  |

 $E_{beam}(adopted) = 234.8 \text{ MeV}$ (  $E_{ex}[^{299}119^*] = 40.3 \text{ MeV}$  )

### 3. Present status

<sup>248</sup>Cm(<sup>51</sup>V, xn) <sup>299-x</sup>119 started in 2020
Measurement is going on.

#### SRILAC can provide 3 pµA <sup>51</sup>V beam. (Development of <sup>248</sup>Cm target+backing that accepts high intensity beam is underway.)



### Online spectra



# **Snapshots**



GARIS-II Ior<mark>imoto</mark> **Aorita** 



1111 111 100000 111

# 5. <sup>51</sup>V+<sup>159</sup>Tb→<sup>210</sup>Ra\*(N = 122) reaction

• Study on fusion reaction mechanisms

- > Deformation effect (tip and side collisions)
- Vsing <sup>159</sup>Tb (β≈0.3, large X-sec)
- Excitation function on fusion residues measured
  - > Barrier distribution
  - $\succ$  xn, pxn and  $\alpha$ xn channels identified by characteristic  $E_{\alpha}$
- Detailed analysis: Pierre Brionnet (paper in preparation)



### <sup>51</sup>V+<sup>159</sup>Tb fusion cross sections



- Estimate production-rates based on the total α-spectrum
  - Anti-correlation with ToF signal (TDC and QDC information) to define αspectrum
  - > No timing information applied
  - Fit of the overall spectrum based on the known branching ratios and α-energies



### **Results (** $^{51}V + {}^{159}Tb \rightarrow {}^{210}Ra^* (N = 122)$ **)**

### Barrier distribution

- **≻ B**<sub>0</sub>=164 MeV
- Excitation function for nx-, pxn-, αxn-channels
  - Most comprehensive measurement ever
  - Seems NO side collision effect ???
    Why ?
  - Maximum X-sec (±25% stat. error)
     σ(p3n): 33 μb at E\* = 56 MeV
     σ(α3n): 27 μb at E\* = 56 MeV
     σ(3n): 4.4 at E\* = 40 MeV
  - $\succ \sigma(p3n)$  and  $\sigma(\alpha 3n) >> \sigma(3n)$





### **Results (** $^{51}V + {}^{159}Tb \rightarrow {}^{210}Ra^* (N = 122)$ **)**

Ec)

10

 $10^{-1}$ 

 $10^{-2}$ 

### Barrier distribution

- **≻ B**<sub>0</sub>=164 MeV
- Excitation function for nx-, pxn-, αxn-channels
  - Most comprehensive measurement ever
  - Seems NO side collision effect ???
    Why ?
  - Maximum X-sec (±25% stat. error)
     σ(p3n): 33 μb at E\* = 56 MeV
     σ(α3n): 27 μb at E\* = 56 MeV
     σ(3n): 4.4 at E\* = 40 MeV
     σ(p3n) and σ(α3n) >> σ(3n)



### **Can we understand xn-channel suppression ?**

• Decay widths (Compound nucleus)  $O(0^{\text{th}})$ 

$$egin{array}{lll} rac{\Gamma_p}{\Gamma_n} &pprox & exp\left(rac{B_n-B_p-V_c^p)}{T}
ight) \ rac{\Gamma_lpha}{\Gamma_n} &pprox & exp\left(rac{B_n+Q_lpha-V_c^lpha)}{T}
ight) \ rac{\Gamma_n}{\Gamma_f} &\propto & exp\left(rac{B_f-B_n}{T}
ight) \end{array}$$

In case of <sup>210</sup>Ra\*

$$\Gamma_n: \Gamma_p: \Gamma_\alpha: \Gamma_f = 1: 0.04: 0.04: (0.1-1)$$

### $\Gamma_n$ dominate, $\Gamma_f$ significant effect

xn suppression is general phenom.?
 Maybe 'YES' for Lanthanoide trg



0<sup>th</sup> order estimate: xn-channel dominates. On the contrary, it is suppressed.
It is interesting how the xn-channel suppression can be explained by compound-decay model.

• Discussion with M. Kowal and T. Caps (Warsaw, Poland) is going on

#### Parameters for decay-width estimation

 ${}^{51}\text{V}+{}^{159}\text{Tb} \rightarrow {}^{210}\text{Ra}^* \qquad E_{
m cm}({}^{51}\text{V})=165 \ {
m MeV}$   $B_n = 9.5 \ {
m MeV} \qquad B_p = 3.1 \ {
m MeV} \qquad Q_{lpha} = 7.2 \ {
m MeV}$   $B_f = 7.5(4\text{n})-9.5(3\text{n}) \ {
m MeV} \quad ({
m Folden}: {
m J.Phys.420(2013)012007})$   $E_{
m ex}^* = 42.9 \ {
m MeV} \rightarrow {
m T} \sim 1.3 \ {
m MeV} \quad (E_{
m ex}^* = a{
m T}^2, \ \ a = rac{A}{15})$ 



#### nSHE Research Group Collaboration RIKEN, ORNL, UTK, Kyushu U., IPHC, Niigata U., RCNP, Saitama U., Tohoku U., JAEA, Yamagata U., IMP, ANU (Managing board member's institutes)



# Summary

### •SHE project (2016-2019) at RNC

- **SRILAC, SC-ECRIS, GARIS-III constructed and commissioned**
- **>** Able to provide strong <sup>51</sup>V beams

Average Coulomb barrier height B<sub>0</sub> of <sup>51</sup>V+<sup>248</sup>Cm
 M. Tanaka et al., JPSJ, 91, 084201 (2022). B<sub>0</sub> = 225.6 MeV

### • Search of Z=119 by <sup>248</sup>Cm(<sup>51</sup>V, xn) <sup>299-x</sup>119 since 2020

Measurement is going on.

### • Reaction mechanism study of <sup>51</sup>V+<sup>159</sup>Tb

- > No side collision effect ?
- > Suppression of xn channel ?